Cortical Shape and Curvedness Analysis of Structural Deficits in Remitting and Non-Remitting Depression.
Cortical shape and curvedness analysis of structural deficits in remitting and non-remitting depression.
PLoS One. 2013; 8(7): e68625
Liao YL, Wang PS, Lu CF, Hung CI, Li CT, Lin CP, Hsieh JC, Su TP, Wu YT
In morphometric neuroimaging studies, the relationship between brain structural changes and the antidepressant treatment response in patients with major depressive disorder has been explored to search depression-trait biomarkers. Although patients were treated with serotonin-related drugs, whether the same treatment resulted in remission and non-remission in depressed patients is currently under investigation. We recruited 25 depressed patients and 25 healthy controls and acquired volumetric magnetic resonance imaging of each participant. We used the shape index and curvedness to classify cortical shapes and quantify shape complexities, respectively, in studying the pharmacological effect on brain morphology. The results showed that different regions of structural abnormalities emerged between remitting and non-remitting patients when contrasted with healthy controls. In addition to comparing structural metrics in each cortical parcellation, similar to the traditional voxel-based morphometric method, we highlighted the importance of structural integrity along the serotonin pathway in response to medication treatment. We discovered that disrupted serotonin-related cortical regions might cause non-remission to antidepressant treatment from a pharmacological perspective. The anomalous areas manifested in non-remitting patients were mainly in the frontolimbic areas, which can be used to differentiate remitting from non-remitting participants before medication treatment. Because non-remission is the failure to respond to treatment with serotonin-related drugs, our method may help clinicians choose appropriate medications for non-remitting patients. HubMed – depression
Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder – possible role for methoxyindole pathway.
PLoS One. 2013; 8(7): e68283
Zhu H, Bogdanov MB, Boyle SH, Matson W, Sharma S, Matson S, Churchill E, Fiehn O, Rush JA, Krishnan RR, Pickering E, Delnomdedieu M, Kaddurah-Daouk R, Network PR
Therapeutic response to selective serotonin (5-HT) reuptake inhibitors in Major Depressive Disorder (MDD) varies considerably among patients, and the onset of antidepressant therapeutic action is delayed until after 2 to 4 weeks of treatment. The objective of this study was to analyze changes within methoxyindole and kynurenine (KYN) branches of tryptophan pathway to determine whether differential regulation within these branches may contribute to mechanism of variation in response to treatment. Metabolomics approach was used to characterize early biochemical changes in tryptophan pathway and correlated biochemical changes with treatment outcome. Outpatients with MDD were randomly assigned to sertraline (n?=?35) or placebo (n?=?40) in a double-blind 4-week trial; response to treatment was measured using the 17-item Hamilton Rating Scale for Depression (HAMD17). Targeted electrochemistry based metabolomic platform (LCECA) was used to profile serum samples from MDD patients. The response rate was slightly higher for sertraline than for placebo (21/35 [60%] vs. 20/40 [50%], respectively, ?(2)(1) ?=?0.75, p?=?0.39). Patients showing a good response to sertraline had higher pretreatment levels of 5-methoxytryptamine (5-MTPM), greater reduction in 5-MTPM levels after treatment, an increase in 5-Methoxytryptophol (5-MTPOL) and Melatonin (MEL) levels, and decreases in the (KYN)/MEL and 3-Hydroxykynurenine (3-OHKY)/MEL ratios post-treatment compared to pretreatment. These changes were not seen in the patients showing poor response to sertraline. In the placebo group, more favorable treatment outcome was associated with increases in 5-MTPOL and MEL levels and significant decreases in the KYN/MEL and 3-OHKY/MEL; changes in 5-MTPM levels were not associated with the 4-week response. These results suggest that recovery from a depressed state due to treatment with drug or with placebo could be associated with preferential utilization of serotonin for production of melatonin and 5-MTPOL. HubMed – depression
Decoding the substrate supply to human neuronal nitric oxide synthase.
PLoS One. 2013; 8(7): e67707
Simon A, Karbach S, Habermeier A, Closs EI
Nitric oxide, produced by the neuronal nitric oxide synthase (nNOS) from L-arginine is an important second messenger molecule in the central nervous system: It influences the synthesis and release of neurotransmitters and plays an important role in long-term potentiation, long-term depression and neuroendocrine secretion. However, under certain pathological conditions such as Alzheimer’s or Parkinson’s disease, stroke and multiple sclerosis, excessive NO production can lead to tissue damage. It is thus desirable to control NO production in these situations. So far, little is known about the substrate supply to human nNOS as a determinant of its activity. Measuring bioactive NO via cGMP formation in reporter cells, we demonstrate here that nNOS in both, human A673 neuroepithelioma and TGW-nu-I neuroblastoma cells can be fast and efficiently nourished by extracellular arginine that enters the cells via membrane transporters (pool I that is freely exchangeable with the extracellular space). When this pool was depleted, NO synthesis was partially sustained by intracellular arginine sources not freely exchangeable with the extracellular space (pool II). Protein breakdown made up by far the largest part of pool II in both cell types. In contrast, citrulline to arginine conversion maintained NO synthesis only in TGW-nu-I neuroblastoma, but not A673 neuroepithelioma cells. Histidine mimicked the effect of protease inhibitors causing an almost complete nNOS inhibition in cells incubated additionally in lysine that depletes the exchangeable arginine pool. Our results identify new ways to modulate nNOS activity by modifying its substrate supply. HubMed – depression
Affective Disorders, Bone Metabolism, and Osteoporosis.
Clin Rev Bone Miner Metab. 2008 Dec; 6(3-4): 101-113
Mezuk B
The nature of the relationship between affective disorders, bone mineral density (BMD), and bone metabolism is unresolved, although there is growing evidence that many medications used to treat affective disorders are associated with low BMD or alterations in neuroendocrine systems that influence bone turnover. The objective of this review is to describe the current evidence regarding the association of unipolar and bipolar depression with BMD and indicators of bone metabolism, and to explore potential mediating and confounding influences of those relationships. The majority of studies of unipolar depression and BMD indicate that depressive symptoms are associated with low BMD. In contrast, evidence regarding the relationship between bipolar depression and BMD is inconsistent. There is limited but suggestive evidence to support an association between affective disorders and some markers of bone turnover. Many medications used to treat affective disorders have effects on physiologic systems that influence bone metabolism, and these conditions are also associated with a range of health behaviors that can influence osteoporosis risk. Future research should focus on disentangling the pathways linking psychotropic medications and their clinical indications with BMD and fracture risk. HubMed – depression
- What Is the Difference Between Christian Drug Rehab and Others?
- Sugar Free Diet? Are They Realistic Long Term, Permanently?
- What Worked Best for Long Term Drug Intervention for Teen With Pot?
- Morro Bay Young Adult Author Tackles Serious Issue
- Questions, Doubts Surround Ford's Whereabouts, Treatment
- Do Something About Hearing Loss During Better Hearing Month