Biotensegrity: A Unifying Theory of Biological Architecture With Applications to Osteopathic Practice, Education, and Research–a Review and Analysis.

Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research–a review and analysis.

Filed under: Rehab Centers

J Am Osteopath Assoc. 2013 Jan; 113(1): 34-52
Swanson RL

Since its inception, osteopathic medicine has sought to identify the mechanical causes of disease and to understand the body’s structure-function relationship. Research conducted during the past 25 years has demonstrated that the architectural principles of tensegrity can be applied to biological organisms (termed biotensegrity) and that these principles can demonstrate the mechanical structure-function relationship at all size scales in the human body. Further, biotensegrity at the cellular level allows the cell to mechanically sense its environment and convert mechanical signals into biochemical changes. When applied to the principles of osteopathic medicine, biotensegrity provides a conceptual understanding of the hierarchical organization of the human body and explains the body’s ability to adapt to change. Further, biotensegrity explains how mechanical forces applied during osteopathic manipulative treatment could lead to effects at the cellular level, providing a platform for future research on the mechanisms of action of osteopathic manipulative treatment.
HubMed – rehab

 

Authors’ Reply to Morin and Colleagues : “Lower Limb Mechanical Properties: Significant References Omitted”

Filed under: Rehab Centers

Sports Med. 2013 Jan 8;
Pearson SJ, McMahon J

HubMed – rehab

 

Epigenetics in Sports.

Filed under: Rehab Centers

Sports Med. 2013 Jan 4;
Ehlert T, Simon P, Moser DA

The heritability of specific phenotypical traits relevant for physical performance has been extensively investigated and discussed by experts from various research fields. By deciphering the complete human DNA sequence, the human genome project has provided impressive insights into the genomic landscape. The hope that this information would reveal the origin of phenotypical traits relevant for physical performance or disease risks has proven overly optimistic, and it is still premature to refer to a ‘post-genomic’ era of biological science. Linking genomic regions with functions, phenotypical traits and variation in disease risk is now a major experimental bottleneck. The recent deluge of genome-wide association studies (GWAS) generates extensive lists of sequence variants and genes potentially linked to phenotypical traits, but functional insight is at best sparse. The focus of this review is on the complex mechanisms that modulate gene expression. A large fraction of these mechanisms is integrated into the field of epigenetics, mainly DNA methylation and histone modifications, which lead to persistent effects on the availability of DNA for transcription. With the exceptions of genomic imprinting and very rare cases of epigenetic inheritance, epigenetic modifications are not inherited transgenerationally. Along with their susceptibility to external influences, epigenetic patterns are highly specific to the individual and may represent pivotal control centers predisposing towards higher or lower physical performance capacities. In that context, we specifically review how epigenetics combined with classical genetics could broaden our knowledge of genotype-phenotype interactions. We discuss some of the shortcomings of GWAS and explain how epigenetic influences can mask the outcome of quantitative genetic studies. We consider epigenetic influences, such as genomic imprinting and epigenetic inheritance, as well as the life-long variability of epigenetic modification patterns and their potential impact on phenotype with special emphasis on traits related to physical performance. We suggest that epigenetic effects may also play a considerable role in the determination of athletic potential and these effects will need to be studied using more sophisticated quantitative genetic models. In the future, epigenetic status and its potential influence on athletic performance will have to be considered, explored and validated using well controlled model systems before we can begin to extrapolate new findings to complex and heterogeneous human populations. A combination of the fields of genomics, epigenomics and transcriptomics along with improved bioinformatics tools and precise phenotyping, as well as a precise classification of the test populations is required for future research to better understand the inter-relations of exercise physiology, performance traits and also susceptibility towards diseases. Only this combined input can provide the overall outlook necessary to decode the molecular foundation of physical performance.
HubMed – rehab

 

The Effect of Exercise on the Cardiovascular Risk Factors Constituting the Metabolic Syndrome : A Meta-Analysis of Controlled Trials.

Filed under: Rehab Centers

Sports Med. 2012 Dec 19;
Pattyn N, Cornelissen VA, Eshghi SR, Vanhees L

BACKGROUND: Numerous meta-analyses have investigated the effect of exercise in different populations and for single cardiovascular risk factors, but none have specifically focused on the metabolic syndrome (MetS) patients and the concomitant effect of exercise on all associated cardiovascular risk factors. OBJECTIVE: The aim of this article was to perform a systematic review with a meta-analysis of randomized and clinical controlled trials (RCTs, CTs) investigating the effect of exercise on cardiovascular risk factors in patients with the MetS. METHODS: RCTs and CTs ?4 weeks investigating the effect of exercise in healthy adults with the MetS and published in a peer-reviewed journal up to November 2011 were included. Primary outcome measures were changes in waist circumference (WC), systolic and diastolic blood pressure, high-density lipoprotein cholesterol (HDL-C), triglycerides and fasting plasma glucose. Peak oxygen uptake ([Formula: see text]) was a secondary outcome. Random and fixed-effect models were used for analyses and data are reported as means and 95% confidence intervals (CIs). RESULTS: Seven trials were included, involving nine study groups and 206 participants (128 in exercise group and 78 in control group). Significant mean reductions in WC -3.4 (95% CI -4.9, -1.8) cm, blood pressure -7.1 (95% CI -9.03, -5.2)/-5.2 (95% CI -6.2, -4.1) mmHg and a significant mean increase in HDL-C +0.06 (95% CI +0.03, +0.09) mmol/L were observed after dynamic endurance training. Mean plasma glucose levels -0.31 (95% CI -0.64, 0.01; p = 0.06) mmol/L and triglycerides -0.05 (95% CI -0.20, 0.09; p = 0.47) mmol/L remained statistically unaltered. In addition, a significant mean improvement in [Formula: see text] of +5.9 (95% CI +3.03, +8.7) mL/kg/min or 19.3% was found. CONCLUSIONS: Our results suggest that dynamic endurance training has a favourable effect on most of the cardiovascular risk factors associated with the MetS. However, in the search for training programmes that optimally improve total cardiovascular risk, further research is warranted, including studies on the effects of resistance training and combined resistance and endurance training.
HubMed – rehab

 

Related Rehab Centers Information…