Drug and Alcohol Rehabilitation: Induction of Tumor Cell Death Through Targeting Tubulin and Evoking Dysregulation of Cell Cycle Regulatory Proteins by Multifunctional Cinnamaldehydes.

Induction of Tumor Cell Death through Targeting Tubulin and Evoking Dysregulation of Cell Cycle Regulatory Proteins by Multifunctional Cinnamaldehydes.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(11): e50125
Nagle AA, Gan FF, Jones G, So CL, Wells G, Chew EH

Multifunctional trans-cinnamaldehyde (CA) and its analogs display anti-cancer properties, with 2-benzoyloxycinnamaldehyde (BCA) and 5-fluoro-2-hydroxycinnamaldehyde (FHCA) being identified as the ortho-substituted analogs that possess potent anti-tumor activities. In this study, BCA, FHCA and a novel analog 5-fluoro-2-benzoyloxycinnamaldehyde (FBCA), were demonstrated to decrease growth and colony formation of human colon-derived HCT 116 and mammary-derived MCF-7 carcinoma cells under non-adhesive conditions. The 2-benzoyloxy and 5-fluoro substituents rendered FBCA more potent than BCA and equipotent to FHCA. The cellular events by which these cinnamaldehydes caused G(2)/M phase arrest and halted proliferation of HCT 116 cells were thereby investigated. Lack of significant accumulation of mitosis marker phospho-histone H3 in cinnamaldehyde-treated cells indicated that the analogs arrested cells in G(2) phase. G(2) arrest was brought about partly by cinnamaldehyde-mediated depletion of cell cycle proteins involved in regulating G(2) to M transition and spindle assembly, namely cdk1, cdc25C, mad2, cdc20 and survivin. Cyclin B1 levels were found to be increased, which in the absence of active cdk1, would fail to drive cells into M phase. Concentrations of cinnamaldehydes that brought about dysregulation of levels of cell cycle proteins also caused tubulin aggregation, as evident from immunodetection of dose-dependent tubulin accumulation in the insoluble cell lysate fractions. In a cell-free system, reduced biotin-conjugated iodoacetamide (BIAM) labeling of tubulin protein pretreated with cinnamaldehydes was indicative of drug interaction with the sulfhydryl groups in tubulin. In conclusion, cinnamaldehydes treatment at proapoptotic concentrations caused tubulin aggregation and dysegulation of cell cycle regulatory proteins cdk1 and cdc25C that contributed at least in part to arresting cells at G(2) phase, resulting in apoptotic cell death characterized by emergence of cleaved forms of caspase 3 and poly (ADP-ribose) polymerase (PARP). Results presented in this study have thus provided further insights into the intricate network of cellular events by which cinnamaldehydes induce tumor cell death.
HubMed – drug

 

Evaluation of Tuberculosis Underreporting in Greece through Comparison with Anti-Tuberculosis Drug Consumption.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(11): e50033
Lytras T, Spala G, Bonovas S, Panagiotopoulos T

Surveillance is an integral part of tuberculosis (TB) control. Greece has a low TB notification rate, but there are doubts about underreporting. Examining anti-TB drug consumption is a way to validate the results of surveillance and estimate TB burden in the country. We used surveillance data from 2004 to 2008 to calculate the average prescribed treatment duration with the first-line anti-TB drugs isoniazid, rifampicin, ethambutol and pyrazinamide. We then obtained the best available data on consumption of these drugs, and calculated the number of treated cases to which these quantities correspond. We thus estimated underreporting at around 80% (77-81%), and annual TB incidence at about 30 cases per 100,000 population, five times over the notification rate. Underreporting was found to be constant over the study period, while incidence followed a decreasing trend. In addition we estimated that one person receives chemoprophylaxis for latent tuberculosis infection (LTBI) for every three TB cases. These results indicate the need for a comprehensive plan to improve TB surveillance and TB contact tracing in Greece, especially in light of the economic crisis affecting the country since 2009.
HubMed – drug

 

Prediction of the Mechanism of Action of Fusaricidin on Bacillus subtilis.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(11): e50003
Yu WB, Yin CY, Zhou Y, Ye BC

Long-term use of antibiotics has engendered a large number of resistant pathogens, which pose a serious threat to human health. Here, we investigated the mechanism of fusaricidin antibacterial activity toward Bacillus subtilis and characterized the pathways responsible for drug resistance. We found that ?(w), an extracytoplasmic function sigma factor, plays an important role in the resistance to fusaricidins during the initial 5 minutes of drug addition. Approximately 18 genes were induced more than 3-fold, of which 66.7% are known to be regulated by ?(w). Over the following 3 h, fusaricidins induced 194 genes more than three-fold, and most were associated with classes of antibiotic-responsive stimulons. Moreover, the fusaricidin treatment increased the catabolism of fatty and amino acids but strongly repressed glucose decomposition and gluconeogenesis. In summary, our data provide insight into the mechanism of fusaricidin activity, on which we based our suggested strategies for the development of novel antibiotic agents.
HubMed – drug

 

A Novel Bioassay for the Activity Determination of Therapeutic Human Brain Natriuretic Peptide (BNP).

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2012; 7(11): e49934
Yu L, Rao C, Shi X, Li Y, Gao K, Li X, Wang J

Recombinant human brain natriuretic peptide (rhBNP) is an important peptide-based therapeutic drug indicated for the treatment of acute heart failure. Accurate determination of the potency of therapeutic rhBNP is crucial for the safety and efficacy of the drug. The current bioassay involves use of rabbit aortic strips, with experiments being complicated and time-consuming and markedly variable in results. Animal-less methods with better precision and accuracy should be explored. We have therefore developed an alternative cell-based assay, which relies on the ability of BNP to induce cGMP production in HEK293 cells expressing BNP receptor guanylyl cyclase-A.An alternative assay based on the measurement of BNP-induced cGMP production was developed. Specifically, the bioassay employs cells engineered to express BNP receptor guanylyl cyclase-A (GCA). Upon rhBNP stimulation, the levels of the second messager cGMP in these cells drastically increased and subsequently secreted into culture supernatants. The quantity of cGMP, which corresponds to the rhBNP activity, was determined using a competitive ELISA developed by us. Compared with the traditional assay, the novel cell-based assay demonstrated better reproducibility and precision.The optimized cell-based assay is much simpler, more rapid and precise compared with the traditional assay using animal tissues. To our knowledge, this is the first report on a novel and viable alternative assay for rhBNP potency analysis.
HubMed – drug

 

More Drug And Alcohol Rehabilitation Information…