Drug and Alcohol Rehabilitation: The Structure of Human Microplasmin in Complex With Textilinin-1, an Aprotinin-Like Inhibitor From the Australian Brown Snake.

The structure of Human Microplasmin in Complex with Textilinin-1, an Aprotinin-like Inhibitor from the Australian Brown Snake.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2013; 8(1): e54104
Millers EK, Johnson LA, Birrell GW, Masci PP, Lavin MF, de Jersey J, Guddat LW

Textilinin-1 is a Kunitz-type serine protease inhibitor from Australian brown snake venom. Its ability to potently and specifically inhibit human plasmin (K(i)?=?0.44 nM) makes it a potential therapeutic drug as a systemic anti-bleeding agent. The crystal structures of the human microplasmin-textilinin-1 and the trypsin-textilinin-1 complexes have been determined to 2.78 Å and 1.64 Å resolution respectively, and show that textilinin-1 binds to trypsin in a canonical mode but to microplasmin in an atypical mode with the catalytic histidine of microplasmin rotated out of the active site. The space vacated by the histidine side-chain in this complex is partially occupied by a water molecule. In the structure of microplasminogen the ?(1) dihedral angle of the side-chain of the catalytic histidine is rotated by 67° from its “active” position in the catalytic triad, as exemplified by its location when microplasmin is bound to streptokinase. However, when textilinin-1 binds to microplasmin the ?(1) dihedral angle of this amino acid residue changes by -157° (i.e. in the opposite rotation direction compared to microplasminogen). The unusual mode of interaction between textilinin-1 and plasmin explains textilinin-1’s selectivity for human plasmin over plasma kallikrein. This difference can be exploited in future drug design efforts.
HubMed – drug

 

Genetic Variation in Plant CYP51s Confers Resistance against Voriconazole, a Novel Inhibitor of Brassinosteroid-Dependent Sterol Biosynthesis.

Filed under: Drug and Alcohol Rehabilitation

PLoS One. 2013; 8(1): e53650
Rozhon W, Husar S, Kalaivanan F, Khan M, Idlhammer M, Shumilina D, Lange T, Hoffmann T, Schwab W, Fujioka S, Poppenberger B

Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14?-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.
HubMed – drug

 

High-resolution melting analysis of the common c.1905+1G>A mutation causing dihydropyrimidine dehydrogenase deficiency and lethal 5-fluorouracil toxicity.

Filed under: Drug and Alcohol Rehabilitation

Front Genet. 2012; 3: 312
Borràs E, Dotor E, Arcusa A, Gamundi MJ, Hernan I, de Sousa Dias M, Mañé B, Agúndez JA, Blanca M, Carballo M

Dihydropyrimidine dehydrogenase (DPD) deficiency is a pharmacogenetic syndrome associated with life-threatening toxicity following exposure to the fluoropyrimidine drugs 5-fluorouracil (5-FU) and capecitabine (CAP), widely used for the treatment of colorectal cancer and other solid tumors. The most prominent loss-of-function allele of the DPYD gene is the splice-site mutation c.1905+1G>A. In this study we report the case of a 73-year old woman with metastatic colorectal cancer who died from drug-induced toxicity after the first cycle of 5-FU-containing chemotherapy. Her symptoms included severe neutropenia, thrombocytopenia, mucositis and diarrhea; she died 16 days later despite intensive care measures. Post-mortem genetic analysis revealed that the patient was homozygous for the c.1905+1G>A deleterious allele and several family members consented to being screened for this mutation. This is the first report in Spain of a case of 5-FU-induced lethal toxicity associated with a genetic defect that results in the complete loss of the DPD enzyme. Although the frequency of c.1905+1G>A carriers in the white population ranges between 1 and 2%, the few data available for the Spanish population and the severity of this case prompted us to design a genotyping procedure to prevent future toxic effects of 5-FU/CAP. Since our group had previously developed a high-resolution melting (HRM) assay for the simultaneous detection of KRAS, BRAF, and/or EGFR somatic mutations in colorectal and lung cancer patients considered for EGFR-targeted therapies, we included the DPYD c.1905+1G>A mutation in the screening test that we describe herein. HRM provides a rapid, sensitive, and inexpensive method that can be easily implemented in diagnostic settings for the routine pre-therapeutic testing of a gene mutation panel with implications in the pharmacologic treatment.
HubMed – drug

 

Multilocus Genotypes of Relevance for Drug Metabolizing Enzymes and Therapy with Thiopurines in Patients with Acute Lymphoblastic Leukemia.

Filed under: Drug and Alcohol Rehabilitation

Front Genet. 2012; 3: 309
Stocco G, Franca R, Verzegnassi F, Londero M, Rabusin M, Decorti G

Multilocus genotypes have been shown to be of relevance for using pharmacogenomic principles to individualize drug therapy. As it relates to thiopurine therapy, genetic polymorphisms of TPMT are strongly associated with the pharmacokinetics and clinical effects of thiopurines (mercaptopurine and azathioprine), influencing their toxicity and efficacy. We have recently demonstrated that TPMT and ITPA genotypes constitute a multilocus genotype of pharmacogenetic relevance for children with acute lymphoblastic leukemia (ALL) receiving thiopurine therapy. The use of high-throughput genomic analysis allows identification of additional candidate genetic factors associated with pharmacogenetic phenotypes, such as TPMT enzymatic activity: PACSIN2 polymorphisms have been identified by a genome-wide analysis, combining evaluation of polymorphisms and gene expression, as a significant determinant of TPMT activity in the HapMap CEU cell lines and the effects of PACSIN2 on TPMT activity and mercaptopurine induced adverse effects were confirmed in children with ALL. Combination of genetic factors of relevance for thiopurine metabolizing enzyme activity, based on the growing understanding of their association with drug metabolism and efficacy, is particularly promising for patients with pediatric ALL. The knowledge basis and clinical applications for multilocus genotypes of importance for therapy with mercaptopurine in pediatric ALL is discussed in the present review.
HubMed – drug

 

Related Drug And Alcohol Rehabilitation Information…