Effects of Propofol, a Sedative-Hypnotic Drug, on the Lipid Profile, Antioxidant Indices, and Cardiovascular Marker Enzymes in Wistar Rats.
Effects of propofol, a sedative-hypnotic drug, on the lipid profile, antioxidant indices, and cardiovascular marker enzymes in wistar rats.
ISRN Pharmacol. 2013; 2013: 230261
Adaramoye OA, Akinwonmi O, Akanni O
In recent years, the activity of anaesthetic propofol on biological processes has been attracting attention. The effect of propofol on biochemical indices in animals is unknown. In this study, we examined the effects of propofol on lipid profile, antioxidant indices, and cardiovascular marker (CVM) enzymes in rats. The study consists of three groups of seven rats each. Group one received corn oil (Control) while groups two and three received propofol (doses of 2 and 4?mg/kg body weight, resp.). Results showed that administration of propofol caused a significant (P < 0.05) and dose-dependent increase in the levels of total bilirubin. Propofol at 2 and 4?mg/kg increased the levels of serum total cholesterol by 74% and 55%, triglycerides by 97% and 115%, and LDL-C (low-density lipoprotein-cholesterol) by 45% and 73%, respectively, while HDL-C (high-density lipoprotein-cholesterol) decreased by 41% and 54%, respectively. Propofol significantly (P < 0.05) increased the levels of the hepatic reduced glutathione (GSH) and activities of GSH-dependent enzymes. Propofol at 2 and 4?mg/kg increased the activities of CVM enzymes: lactate dehydrogenase by 1.7 and 1.8 folds and creatinine phosphokinase by 2.0 and 2.1 folds, respectively. Taken together, propofol increased the levels of GSH and GSH-dependent enzymes but adversely affected the lipid profile of the rats. HubMed – drug
Polyphenols: multipotent therapeutic agents in neurodegenerative diseases.
Oxid Med Cell Longev. 2013; 2013: 891748
Bhullar KS, Rupasinghe HP
Aging leads to numerous transitions in brain physiology including synaptic dysfunction and disturbances in cognition and memory. With a few clinically relevant drugs, a substantial portion of aging population at risk for age-related neurodegenerative disorders require nutritional intervention. Dietary intake of polyphenols is known to attenuate oxidative stress and reduce the risk for related neurodegenerative diseases such as Alzheimer’s disease (AD), stroke, multiple sclerosis (MS), Parkinson’s disease (PD), and Huntington’s disease (HD). Polyphenols exhibit strong potential to address the etiology of neurological disorders as they attenuate their complex physiology by modulating several therapeutic targets at once. Firstly, we review the advances in the therapeutic role of polyphenols in cell and animal models of AD, PD, MS, and HD and activation of drug targets for controlling pathological manifestations. Secondly, we present principle pathways in which polyphenol intake translates into therapeutic outcomes. In particular, signaling pathways like PPAR, Nrf2, STAT, HIF, and MAPK along with modulation of immune response by polyphenols are discussed. Although current polyphenol researches have limited impact on clinical practice, they have strong evidence and testable hypothesis to contribute clinical advances and drug discovery towards age-related neurological disorders. HubMed – drug
Chloroquine interference with hemoglobin endocytic trafficking suppresses adaptive heme and iron homeostasis in macrophages: the paradox of an antimalarial agent.
Oxid Med Cell Longev. 2013; 2013: 870472
Schaer CA, Laczko E, Schoedon G, Schaer DJ, Vallelian F
The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb), which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM). We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1) response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis. HubMed – drug