Evaluating Baculovirus as a Vector for Human Prostate Cancer Gene Therapy.

Evaluating baculovirus as a vector for human prostate cancer gene therapy.

PLoS One. 2013; 8(6): e65557
Swift SL, Rivera GC, Dussupt V, Leadley RM, Hudson LC, Ma de Ridder C, Kraaij R, Burns JE, Maitland NJ, Georgopoulos LJ

Gene therapy represents an attractive strategy for the non-invasive treatment of prostate cancer, where current clinical interventions show limited efficacy. Here, we evaluate the use of the insect virus, baculovirus (BV), as a novel vector for human prostate cancer gene therapy. Since prostate tumours represent a heterogeneous environment, a therapeutic approach that achieves long-term regression must be capable of targeting multiple transformed cell populations. Furthermore, discrimination in the targeting of malignant compared to non-malignant cells would have value in minimising side effects. We employed a number of prostate cancer models to analyse the potential for BV to achieve these goals. In vitro, both traditional prostate cell lines as well as primary epithelial or stromal cells derived from patient prostate biopsies, in two- or three-dimensional cultures, were used. We also evaluated BV in vivo in murine prostate cancer xenograft models. BV was capable of preferentially transducing invasive malignant prostate cancer cell lines compared to early stage cancers and non-malignant samples, a restriction that was not a function of nuclear import. Of more clinical relevance, primary patient-derived prostate cancer cells were also efficiently transduced by BV, with robust rates observed in epithelial cells of basal phenotype, which expressed BV-encoded transgenes faster than epithelial cells of a more differentiated, luminal phenotype. Maximum transduction capacity was observed in stromal cells. BV was able to penetrate through three-dimensional structures, including in vitro spheroids and in vivo orthotopic xenografts. BV vectors containing a nitroreductase transgene in a gene-directed enzyme pro-drug therapy approach were capable of efficiently killing malignant prostate targets following administration of the pro-drug, CB1954. Thus, BV is capable of transducing a large proportion of prostate cell types within a heterogeneous 3-D prostate tumour, can facilitate cell death using a pro-drug approach, and shows promise as a vector for the treatment of prostate cancer. HubMed – drug

 

Engineering human T cells for resistance to methotrexate and mycophenolate mofetil as an in vivo cell selection strategy.

PLoS One. 2013; 8(6): e65519
Jonnalagadda M, Brown CE, Chang WC, Ostberg JR, Forman SJ, Jensen MC

Gene transfer and drug selection systems that enforce ongoing transgene expression in vitro and in vivo which are compatible with human pharmaceutical drugs are currently underdeveloped. Here, we report on the utility of incorporating human enzyme muteins that confer resistance to the lymphotoxic/immunosuppressive drugs methotrexate (MTX) and mycophenolate mofetil (MMF) in a multicistronic lentiviral vector for in vivo T lymphocyte selection. We found that co-expression of human dihydrofolate reductase (DHFR(FS); L22F, F31S) and inosine monophosphate dehydrogenase II (IMPDH2(IY); T333I, S351Y) conferred T cell resistance to the cytocidal and anti-proliferative effects of these drugs at concentrations that can be achieved clinically (up to 0.1 µM MTX and 1.0 µM MPA). Furthermore, using a immunodeficient mouse model that supports the engraftment of central memory derived human T cells, in vivo selection studies demonstrate that huEGFRt(+)DHFR(FS+)IMPDH2(IY+) T cells could be enriched following adoptive transfer either by systemic administration of MTX alone (4.4 -fold), MMF alone (2.9-fold), or combined MTX and MMF (4.9-fold). These findings demonstrate the utility of both DHFR(FS)/MTX and IMPDH2(IY)/MMF for in vivo selection of lentivirally transduced human T cells. Vectors incorporating these muteins in combination with other therapeutic transgenes may facilitate the selective engraftment of therapeutically active cells in recipients. HubMed – drug

 

Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice.

PLoS One. 2013; 8(6): e65339
Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H

Nanobubbles (<200 nm in diameter) have several unique properties such as long lifetime in liquid owing to its negatively charged surface, and its high gas solubility into the liquid owing to its high internal pressure. They are used in variety of fields including diagnostic aids and drug delivery, while there are no reports assessing their effects on the growth of lives. Nanobubbles of air or oxygen gas were generated using a nanobubble aerator (BUVITAS; Ligaric Company Limited, Osaka, Japan). Brassica campestris were cultured hydroponically for 4 weeks within air-nanobubble water or within normal water. Sweetfish (for 3 weeks) and rainbow trout (for 6 weeks) were kept either within air-nanobubble water or within normal water. Finally, 5 week-old male DBA1/J mice were bred with normal free-chaw and free-drinking either of oxygen-nanobubble water or of normal water for 12 weeks. Oxygen-nanobubble significantly increased the dissolved oxygen concentration of water as well as concentration/size of nanobubbles which were relatively stable for 70 days. Air-nanobubble water significantly promoted the height (19.1 vs. 16.7 cm; P<0.05), length of leaves (24.4 vs. 22.4 cm; P<0.01), and aerial fresh weight (27.3 vs. 20.3 g; P<0.01) of Brassica campestris compared to normal water. Total weight of sweetfish increased from 3.0 to 6.4 kg in normal water, whereas it increased from 3.0 to 10.2 kg in air-nanobubble water. In addition, total weight of rainbow trout increased from 50.0 to 129.5 kg in normal water, whereas it increased from 50.0 to 148.0 kg in air-nanobubble water. Free oral intake of oxygen-nanobubble water significantly promoted the weight (23.5 vs. 21.8 g; P<0.01) and the length (17.0 vs. 16.1 cm; P<0.001) of mice compared to that of normal water. We have demonstrated for the first time that oxygen and air-nanobubble water may be potentially effective tools for the growth of lives. HubMed – drug

 

Differential Mechanisms of Activation of the Ang Peptide Receptors AT1, AT2, and MAS: Using In Silico Techniques to Differentiate the Three Receptors.

PLoS One. 2013; 8(6): e65307
Prokop JW, Santos RA, Milsted A

The renin-angiotensin system is involved in multiple conditions ranging from cardiovascular disorders to cancer. Components of the pathway, including ACE, renin and angiotensin receptors are targets for disease treatment. This study addresses three receptors of the pathway: AT1, AT2, and MAS and how the receptors are similar and differ in activation by angiotensin peptides. Combining biochemical and amino acid variation data with multiple species sequence alignments, structural models, and docking site predictions allows for visualization of how angiotensin peptides may bind and activate the receptors; allowing identification of conserved and variant mechanisms in the receptors. MAS differs from AT1 favoring Ang-(1-7) and not Ang II binding, while AT2 recently has been suggested to preferentially bind Ang III. A new model of Ang peptide binding to AT1 and AT2 is proposed that correlates data from site directed mutagenesis and photolabled experiments that were previously considered conflicting. Ang II binds AT1 and AT2 through a conserved initial binding mode involving amino acids 111 (consensus 325) of AT1 (Asn) interacting with Tyr (4) of Ang II and 199 and 256 (consensus 512 and 621, a Lys and His respectively) interacting with Phe (8) of Ang II. In MAS these sites are not conserved, leading to differential binding and activation by Ang-(1-7). In both AT1 and AT2, the Ang II peptide may internalize through Phe (8) of Ang II propagating through the receptors’ conserved aromatic amino acids to the final photolabled positioning relative to either AT1 (amino acid 294, Asn, consensus 725) or AT2 (138, Leu, consensus 336). Understanding receptor activation provides valuable information for drug design and identification of other receptors that can potentially bind Ang peptides. HubMed – drug

 

An Ethanolic Extract of Lindera obtusiloba Stems, YJP-14, Improves Endothelial Dysfunction, Metabolic Parameters and Physical Performance in Diabetic db/db Mice.

PLoS One. 2013; 8(6): e65227
Lee JO, Auger C, Park DH, Kang M, Oak MH, Kim KR, Schini-Kerth VB

Lindera obtusiloba is a medicinal herb traditionally used in Asia for improvement of blood circulation, treatment of inflammation, and prevention of liver damage. A previous study has shown that an ethanolic extract of Lindera obtusiloba stems (LOE) has vasoprotective and antihypertensive effects. The possibility that Lindera obtusiloba improves endothelial function and metabolic parameters in type 2 diabetes mellitus (T2DM) remains to be examined. Therefore, the aim of the present study was to determine the potential of LOE to prevent the development of an endothelial dysfunction, and improve metabolic parameters including hyperglycemia, albuminuria and physical exercise capacity in db/db mice, an experimental model of T2DM. The effect of LOE (100 mg/kg/day by gavage for 8 weeks) on these parameters was compared to that of an oral antidiabetic drug, pioglitazone (30 mg/kg/day by gavage). Reduced blood glucose level, body weight and albumin-creatinine ratio were observed in the group receiving LOE compared to the control db/db group. The LOE treatment improved endothelium-dependent relaxations, abolished endothelium-dependent contractions to acetylcholine in the aorta, and normalized the increased vascular oxidative stress and expression of NADPH oxidase, cyclooxygenases, angiotensin II, angiotensin type 1 receptors and peroxynitrite and the decreased expression of endothelial NO synthase in db/db mice. The angiotensin-converting enzyme (ACE) activity was reduced in the LOE group compared to that in the control db/db group. LOE also inhibited the activity of purified ACE, COX-1 and COX-2 in a dose-dependent manner. In addition, LOE improved physical exercise capacity. Thus, the present findings indicate that LOE has a beneficial effect on the vascular system in db/db mice by improving endothelium-dependent relaxations and vascular oxidative stress most likely by normalizing the angiotensin system, and also on metabolic parameters, and these effects are associated with an enhanced physical exercise capacity. HubMed – drug