Formulation and Evaluation of Sublingual Tablets Containing Sumatriptan Succinate.

Formulation and evaluation of sublingual tablets containing Sumatriptan succinate.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 7; 2(3): 162-168
Prajapati ST, Patel PB, Patel CN

OBJECTIVE: Sumatriptan succinate is a selective 5-hydroxytryptamine-1 receptor agonist effective in the acute treatment of migraine headaches, having low bioavailability of about 15% orally due to first-pass metabolism. The purpose of this research was to mask the intensely bitter taste of Sumatriptan succinate and to formulate fast-acting, taste-masked sublingual tablet formulation. MATERIALS AND METHODS: Taste masking was performed by solid dispersion method with mannitol and ion exchange with Kyron T 114 because it releases the drug in salivary pH. The resultant batches were evaluated for in-vivo taste masking as well compatability study (Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC)). For a better feel in the mouth, menthol and sweetener Na saccharine were added to the tablet formulation. The tablets were prepared by direct compression and evaluated for weight variation, thickness, friability, drug content, hardness, disintegration time, wetting time, in vitro drug release, and in vitro permeation study. RESULTS AND DISCUSSION: Optimized batches disintegrated in vitro within 28-34 s. Maximum drug release could be achieved with in 10 min for the solid dispersion batches and 14-15 min for the ion-exchange batches with Kyron T 114. The optimized tablet formulation showed better taste and the formulated sublingual tablets may act as a potential alternate for the Sumatriptan succinate oral tablet. CONCLUSION: Sumatriptan succinate can be successfully taste-masked by both the solid dispersion method using mannitol by the melting method and Ion exchange resin with Kyron T114. It was also concluded that prepared formulation improve bioavailability by prevention of first pass metabolism.
HubMed – drug

 

Development and evaluation of chitosan based oral controlled matrix tablets of losartan potassium.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 7; 2(3): 157-161
Rao TV, Kumar GK, Ahmed MG, Joshi V

AIM AND BACKGROUND: The novelty of the present study was to control the release profile of matrix tablets of losartan potassium prepared by using different concentrations of chitosan and trisodium citrate as cross-linking agent with combination of various release retardant polymers. MATERIALS AND METHODS: Twelve formulations were prepared using HPMC K100M, carbopol 934P, and xanthan gum as polymers. Matrix tablets were prepared by wet granulation technique. The granules were subjected to precompression parameters such as angle of repose, loose bulk density, tapped bulk density, compressibility index. Tablets were evaluated for weight variation, hardness, drug content, in-vitro dissolution, stability studies, respectively. Drug -polymer compatibility studies were determined by FTIR spectroscopy. Further stability studies were carried out for 3months in accelerated conditions at 40°C and 75%RH. The granules of all formulations exhibited good flow and compressibility. In-vitro dissolution studies were carried out for 24 h using 0.1 N HCl for the first 2 h and pH 6.8 phosphate buffers for the remaining 22h. RESULTS: It was found that among the 12 formulations F11 and F12 showed good dissolution profile to control the drug release. The release data was fitted to various mathematical models such as, Higuchi, Korsmeyer, first-order, and zero-order to evaluate the kinetics and the drug release. The drug release follows zero-order kinetics and the mechanism was found to be diffusion controlled and Case II transport. FT-IR spectroscopic studies revealed no interaction between drug and polymer. The stability studies indicated that F11 and F12 formulations were stable for 3months. CONCLUSION: The above results concluded that by combining different classes of polymers an acceptable release profile can be obtained in the fluctuating in vivo environment.
HubMed – drug

 

Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 7; 2(3): 150-156
Vittal GV, Deveswaran R, Bharath S, Basavaraj B, Madhavan V

INTRODUCTION: Liquisolid technique is used in delivery of lipophilic and poorly water soluble drugs through oral route. It involves dissolving water insoluble drugs in nonvolatile solvents and converting into acceptably flowing and compressible powders. The objective of the present work was to enhance the dissolution rate of ketoprofen using microcrystalline cellulose as carrier, aerosil 200 as coating material, and polyethylene glycol as nonvolatile water miscible liquid vehicle. MATERIALS AND METHODS: The drug concentration was kept constant in all formulations at 40% w/w. Optimization was carried out using Box-Behnken design by selecting liquid load factor, amount of coating material, and amount of magnesium oxide as independent variables; cumulative percentage drug release and angle of repose were considered as dependent variables. RESULTS: The Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) studies revealed that there was no possible interaction between drug and tablet excipients. Prepared ketoprofen liquisolid tablets were evaluated for hardness, weight variation, friability, in-vitro disintegration time, drug content uniformity, and in-vitro dissolution studies. The optimized formulation yielded the response values, which were very close to the predicted values. The accelerated stability studies conducted showed that liquisolid tablets were not affected by ageing and there were no appreciable changes in the drug content.
HubMed – drug

 

Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

Filed under: Drug and Alcohol Rehabilitation

Int J Pharm Investig. 2012 7; 2(3): 140-149
Sabale V, Vora S

BACKGROUND: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. MATERIALS AND METHODS: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. RESULTS: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. CONCLUSION: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.
HubMed – drug

 

Find More Drug And Alcohol Rehabilitation Information…