Nanotechnology in the Targeted Drug Delivery for Bone Diseases and Bone Regeneration.
Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration.
Int J Nanomedicine. 2013; 8: 2305-17
Gu W, Wu C, Chen J, Xiao Y
Nanotechnology is a vigorous research area and one of its important applications is in biomedical sciences. Among biomedical applications, targeted drug delivery is one of the most extensively studied subjects. Nanostructured particles and scaffolds have been widely studied for increasing treatment efficacy and specificity of present treatment approaches. Similarly, this technique has been used for treating bone diseases including bone regeneration. In this review, we have summarized and highlighted the recent advancement of nanostructured particles and scaffolds for the treatment of cancer bone metastasis, osteosarcoma, bone infections and inflammatory diseases, osteoarthritis, as well as for bone regeneration. Nanoparticles used to deliver deoxyribonucleic acid and ribonucleic acid molecules to specific bone sites for gene therapies are also included. The investigation of the implications of nanoparticles in bone diseases have just begun, and has already shown some promising potential. Further studies have to be conducted, aimed specifically at assessing targeted delivery and bioactive scaffolds to further improve their efficacy before they can be used clinically. HubMed – drug
Preparation, characterization, and in vivo evaluation of tanshinone IIA solid dispersions with silica nanoparticles.
Int J Nanomedicine. 2013; 8: 2285-93
Jiang YR, Zhang ZH, Liu QY, Hu SY, Chen XY, Jia XB
We prepared solid dispersions (SDs) of tanshinone IIA (TSIIA) with silica nanoparticles, which function as dispersing carriers, using a spray-drying method and evaluated their in vitro dissolution and in vivo performance. The extent of TSIIA dissolution in the silica nanoparticles/TSIIA system (weight ratio, 5:1) was approximately 92% higher than that of the pure drug after 60 minutes. However, increasing the content of silica nanoparticles from 5:1 to 7:1 in this system did not significantly increase the rate or extent of TSIIA dissolution. The physicochemical properties of SDs were investigated using scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and Fourier transforms infrared spectroscopy. Studying the stability of the SDs of TSIIA revealed that the drug content of the formulation and dissolution behavior was unchanged under the applied storage conditions. In vivo tests showed that SDs of the silica nanoparticles/TSIIA had a significantly larger area under the concentration-time curve, which was 1.27 times more than that of TSIIA (P < 0.01). Additionally, the values of maximum plasma concentration and the time to reach maximum plasma concentration of the SDs were higher than those of TSIIA and the physical mixing system. Based on these results, we conclude that the silica nanoparticle based SDs achieved complete dissolution, increased absorption rate, maintained drug stability, and showed improved oral bioavailability compared to TSIIA alone. HubMed – drug
Construction of a three-dimensional model of cardiovascular disease and deployment of a new method of fostering patient adherence to instruction.
Patient Prefer Adherence. 2013; 7: 579-87
Nakano M, Shirotake S
For the patient-oriented medical services, it is important to assist the patient in understanding the management of cardiovascular diseases. The strategy of medication instruction is particularly important to enhance medication adherence.The original model was newly constructed and covers multiple factors, including those related to renin-angiotensin, metabolism of glucose and lipids, blood coagulation, and the organic basis of the disease. The four factors of cardiovascular diseases and their relationship with the disease state are expressed in the form of a tetrahedral model.This disease model illustrates in points, lines, surfaces, and spaces that the factors combine with each other and result in a pathological condition, as determined by the degree of involvement of each factor in a discontinuous manner. The model helps cardiovascular patients to understand visually that there is more than one pathological condition. Our model allowed patients to quickly comprehend the complex pharmacotherapy of cardiovascular diseases by presenting the information in the form of a three-dimensional structure. Lifestyle-related diseases, including cardiovascular diseases, involve complicated factors and require careful pharmacotherapy which is tailored to individual patient needs. In this regard, the development of instructional tools is particularly effective.The three-dimensional model shows optimum treatment by correctly considering both the quantity and quality of the four pathological factors associated with cardiovascular diseases. Appropriate patient compliance instruction based on life guidance is thought to be essential in the treatment of cardiovascular diseases. HubMed – drug