Scientific Challenges and Implementation Barriers to Translation of Pharmacogenomics in Clinical Practice.

Scientific challenges and implementation barriers to translation of pharmacogenomics in clinical practice.

ISRN Pharmacol. 2013; 2013: 641089
Lam YW

The mapping of the human genome and subsequent advancements in genetic technology had provided clinicians and scientists an understanding of the genetic basis of altered drug pharmacokinetics and pharmacodynamics, as well as some examples of applying genomic data in clinical practice. This has raised the public expectation that predicting patients’ responses to drug therapy is now possible in every therapeutic area, and personalized drug therapy would come sooner than later. However, debate continues among most stakeholders involved in drug development and clinical decision-making on whether pharmacogenomic biomarkers should be used in patient assessment, as well as when and in whom to use the biomarker-based diagnostic tests. Currently, most would agree that achieving the goal of personalized therapy remains years, if not decades, away. Realistic application of genomic findings and technologies in clinical practice and drug development require addressing multiple logistics and challenges that go beyond discovery of gene variants and/or completion of prospective controlled clinical trials. The goal of personalized medicine can only be achieved when all stakeholders in the field work together, with willingness to accept occasional paradigm change in their current approach. HubMed – drug

 

Statistical Analysis of Metal Chelating Activity of Centella asiatica and Erythroxylum cuneatum Using Response Surface Methodology.

Biotechnol Res Int. 2013; 2013: 137851
Mohd Salim RJ, Adenan MI, Amid A, Jauri MH, Sued AS

The purpose of the study is to evaluate the relationship between the extraction parameters and the metal chelating activity of Centella asiatica (CA) and Erythroxylum cuneatum (EC). The response surface methodology was used to optimize the extraction parameters of methanolic extract of CA and EC with respect to the metal chelating activity. For CA, Run 17 gave optimum chelating activity with IC50 = 0.93?mg/mL at an extraction temperature of 25°C, speed of agitation at 200?rpm, ratio of plant material to solvent at 1?g?:?45?mL and extraction time at 1.5 hour. As for EC, Run 13 with 60°C, 200?rpm, 1?g?:?35?mL and 1 hour had metal chelating activity at IC50 = 0.3817?mg/mL. Both optimized extracts were further partitioned using a solvent system to evaluate the fraction responsible for the chelating activity of the plants. The hexane fraction of CA showed potential activity with chelating activity at IC50 = 0.090 and the ethyl acetate fraction of EC had IC50 = 0.120?mg/mL. The study showed that the response surface methodology helped to reduce the extraction time, temperature and agitation and subsequently improve the chelating activity of the plants in comparison to the conventional method. HubMed – drug

 

Bisphosphonates and cancer: what opportunities from nanotechnology?

J Drug Deliv. 2013; 2013: 637976
De Rosa G, Misso G, Salzano G, Caraglia M

Bisphosphonates (BPs) are synthetic analogues of naturally occurring pyrophosphate compounds. They are used in clinical practice to inhibit bone resorption in bone metastases, osteoporosis, and Paget’s disease. BPs induce apoptosis because they can be metabolically incorporated into nonhydrolyzable analogues of adenosine triphosphate. In addition, the nitrogen-containing BPs (N-BPs), second-generation BPs, act by inhibiting farnesyl diphosphate (FPP) synthase, a key enzyme of the mevalonate pathway. These molecules are able to induce apoptosis of a number of cancer cells in vitro. Moreover, antiangiogenic effect of BPs has also been reported. However, despite these promising properties, BPs rapidly accumulate into the bone, thus hampering their use to treat extraskeletal tumors. Nanotechnologies can represent an opportunity to limit BP accumulation into the bone, thus increasing drug level in extraskeletal sites of the body. Thus, nanocarriers encapsulating BPs can be used to target macrophages, to reduce angiogenesis, and to directly kill cancer cell. Moreover, nanocarriers can be conjugated with BPs to specifically deliver anticancer agent to bone tumors. This paper describes, in the first part, the state-of-art on the BPs, and, in the following part, the main studies in which nanotechnologies have been proposed to investigate new indications for BPs in cancer therapy. HubMed – drug

 

Stealth properties to improve therapeutic efficacy of drug nanocarriers.

J Drug Deliv. 2013; 2013: 374252
Salmaso S, Caliceti P

Over the last few decades, nanocarriers for drug delivery have emerged as powerful tools with unquestionable potential to improve the therapeutic efficacy of anticancer drugs. Many colloidal drug delivery systems are underdevelopment to ameliorate the site specificity of drug action and reduce the systemic side effects. By virtue of their small size they can be injected intravenously and disposed into the target tissues where they release the drug. Nanocarriers interact massively with the surrounding environment, namely, endothelium vessels as well as cells and blood proteins. Consequently, they are rapidly removed from the circulation mostly by the mononuclear phagocyte system. In order to endow nanosystems with long circulation properties, new technologies aimed at the surface modification of their physicochemical features have been developed. In particular, stealth nanocarriers can be obtained by polymeric coating. In this paper, the basic concept underlining the “stealth” properties of drug nanocarriers, the parameters influencing the polymer coating performance in terms of opsonins/macrophages interaction with the colloid surface, the most commonly used materials for the coating process and the outcomes of this peculiar procedure are thoroughly discussed. HubMed – drug